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1. Introduction
Analog filters are a key component of any signal conditioning system. Precision 
Filters (PFI) offers a complete line of programmable filters to meet the exacting 
demands of our customers. When compared to conventional industry types, our 
proprietary FLAT and PULSE designs provide superior response characteristics 
that can be adjusted for a given set of measurement criteria. These features are 
detailed in our standard filter specification sheets, which are intended to guide 
customers to the right design for their intended application. To facilitate the use of 
this information for product evaluation and setup, we present here an introduction 
to the mathematical models used in filter analysis, with a particular focus on how 
important measures are derived and displayed. Key terms introduced in the text 
are italicized where they first appear and are listed, along with definitions, in the 
appendix (Section A.2). We address all the specifications listed in our product 
documentation, and the examples provided are based on real PFI filters. 

2. Filter Definitions
An analog filter is a frequency selective circuit designed to modify the spectral 
content of electrical waveforms. Filter design is guided by a mathematical transfer 
function that relates filter output to input in terms of frequency. The form of the 
transfer function determines the topology of the circuit and the properties of its 
elements, which include both passive and active components.  

The transfer function represents a continuous-time linear system that operates on 
an input to produce a response. The input-response relationship can be analyzed 
in either the time or frequency domain. In the time domain, the relationship is de-
fined by convolution with the filter’s impulse response, which is just the response 
of the filter to a unit impulse. In the frequency domain, the response is defined by 
multiplication with the transfer function, which is a rational function of the com-
plex Laplace1 variable s. These relationships are depicted schematically in Figure 
1. In the s domain, a filter’s frequency response relates the frequency of a periodic 
input signal to both the amplitude and phase of the output. In the time domain, a 
filter’s transient response relates the shape of a reference input – usually an im-
pulse or its integral, a step function – to the output waveform. Though attention is 
often focused on the frequency response, our filter specifications include informa-
tion on both.

1 The Laplace transform can be thought of as a generalization of the Fourier transform for causal 

functions (i.e., x(t) = 0 for t < 0), and provides a similar mapping from the time to frequency do-

main. The imaginary part of the complex Laplace variable s is the frequency:  s = σ + jω.   
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2.1 
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Figure 1. Graphical representation of filtering as an input-output system. Filtering can be modeled in the time 

domain via convolution and in the frequency domain by multiplication.  Here h(t) represents the filter’s impulse 

response, and H(s) represents the filter’s transfer function.

Transfer Function

All analog filters are defined by a transfer function of the complex Laplace varia-
ble s with the form 

(1) H s N s
D s
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where N and D are polynomials. The order of a filter is just the order of the 
polynomial D. Reference is often made to a filter’s poles and zeros. The poles and 
zeros are simply the roots of D (i.e. D(s) = 0) and N (i.e. N(s) = 0), respectively; 
hence the number of poles is equal to the order of the filter. For example, PFI’s 
LP4F filter is defined by a 4th order transfer function with 4 poles. (The filter also 
has 4 zeros, but not all designs have equal numbers of poles and zeros.) Higher 
order filters offer some desirable features, but they come at a cost: the amount of 
hardware required to implement a filter in a circuit scales proportionally with its 
order.

2.2  Frequency Response

The argument of the transfer function is the complex Laplace domain coordinate 
s. Of importance here is that only the imaginary part of s depends on frequency.  
The frequency response of the filter is determined by evaluating Equation (1)
along this frequency axis. The response can be written in terms of the poles and 
zeros defined above:
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Note that the poles and zeros of the nth order filter appear in the factors of the 
transfer function, and ω is angular frequency (= 2πf ). As both (1) and (2) define 
the ratio of output to input for the filter as a function of frequency, the coefficient 
K is called a gain factor. The frequency response H( jω) is complex-valued: it 
defines both the magnitude and phase of the response as a function of frequency.  
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The complete frequency response therefore consists of an amplitude and phase 
response.

Amplitude Response

As a ratio, the amplitude response is commonly expressed on the decibel scale:

(3) H HdB � � �20 10log

If a filter has an amplitude response of 1 for a given frequency (i.e. output am-
plitude = input amplitude), the response in decibels is 0: the filter is said to pass 
energy at that frequency. Correspondingly, negative values imply attenuation 
(output amplitude < input amplitude) of a frequency component while positive 
values imply amplification (output amplitude > input amplitude). By convention, 
a filter’s gain is reported as HdB and its attenuation as –HdB. In practice, analog 
filters are designed to pass frequencies over one portion of the input spectrum 
while attenuating the remaining portion (i.e. gain ≤ 0). The relative position of this 
passband with respect to the stopband defines the four main filter classes: Low-
pass, high-pass, band-pass, and band-stop2.

A filter’s amplitude response is most easily seen by plotting Equation (3) over a 
range of frequencies. From a design perspective, it’s most useful to consider the 
normalized response. The normalized amplitude response is a scaled version of 
Equation (2): the frequencies are normalized by the cutoff frequency, Fc, defined 
as the frequency at which a given attenuation is reached (conventionally HdB = 
3.01, or HdB = 1/√2). Working with normalized frequencies facilitates the compar-
ison of different filter types and their response characteristics (both amplitude and 
phase). Once a filter is chosen for implementation, the actual frequency response 
can be obtained by rescaling the normalized frequencies by the desired cutoff 
frequency. 

The amplitude response of PFI’s LP4F low-pass filter is shown in Figure 2A. 
Overlain on the response are a number of commonly used descriptors. The re-
sponse is segmented into three domains by two reference frequencies: the cutoff 
frequency Fc (= 1 after normalization) and the stopband frequency (= 5.95Fc for 
LP4F). The passband (attenuation ≤ 3.01 dB; Figure 2B) and stopband (attenuation 
≥ 80 dB for LP4F) are separated by the transition band, whose width along the 
frequency axis depends on the filter’s roll-off slope: filters with higher roll-off 
slopes are said to be sharper. An alternative characterization for the sharpness 
of a filter is the shape factor, which is simply the ratio of the stopband frequency 
to cutoff frequency (= 5.95 for LP4F). (Expressed this way, a lower shape factor 

2 The gain factor K determines the total transfer function gain. We report this with respect to the 

filter’s passband: DC gain for our low-pass filters and high-frequency gain for our high-pass filters 

(both 0 dB for our designs).  
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indicates a sharper low-pass filter.) The term ripple is used to describe deviations 
in the transfer function’s amplitude response over a given frequency band and is 
given as an amplitude range. The LP4F filter has only stopband ripple – its pass-
band response is flat – but some filter types also have passband ripple.
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Figure 2. Summary of the low-pass LP4F filter’s frequency response: (A) Full amplitude response, (B) Passband amplitude response, (C) Phase 

response, and (D) Phase and group delays. The passband amplitude response in (B) includes tabulated data, as is standard on PFI specification 

sheets. Note that the gain and attenuation in (A) and (B) are equivalent except for a sign change.

Increasing the filter order changes the amplitude response, as can be seen between 
Figure 2A-B and Figure 3A-B. The latter presents the amplitude response of PFI’s 
LP8F filter, which is an 8-pole version of the same filter prototype (PFI’s FLAT 
Mode) used for the LP4F. The higher-order LP8F provides a flatter passband and 
sharper roll-off than the LP4F: the passband attenuation stays below 0.5 dB out to 
> 90% of the cutoff frequency, and the shape factor is 1.75.

The amplitude response defines how the filter will modify the amplitude of any 
spectral component passed through it. However, the filter will also affect the 
phase of those components and, consequently, the shape of the output waveform.
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Figure 3. Summary of the low-pass LP8F filter’s frequency response: (A) Full amplitude response, (B) Passband amplitude response, (C) Phase 

response, and (D) Phase and group delays. The passband amplitude response in (B) includes tabulated data, as is standard on PFI specification 

sheets. Note that the gain and attenuation in (A) and (B) are equivalent except for a sign change.   

Phase Response  

As noted above, the amplitude and phase responses are obtained from the total 
frequency response as |H( jω)| and ∠H( jω), respectively. The phase angles can 
also be plotted as a function of frequency, again normalizing by Fc. The LP4F 
phase response is shown in Figure 2C, with the angles plotted in degrees. Note 
that the phase response is plotted over the passband only (DC to Fc), as we are 
mainly interested in the phase of in-band signals3.

An important property of the phase response is its departure from linearity. This 
deviation is termed phase distortion because a filter with a nonlinear phase re-
sponse in the passband will modify the shape of a spectrally rich in-band wave-
form. The distortion is measured in units of phase (degrees). We include the phase 

3 Note that here and elsewhere, signals of interest that should be preserved by the filter are referred 

to as in-band signals. Spectral components that lie outside the band of interest are described as 

out-of-band.  
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distortion whenever we present the phase response of a low-pass filter (Figure 2C, 
Figure 3C). 

Phase distortion is most easily understood in terms of time delays. From the phase 
response of the filter, we can define two delays in terms of the phase φ = ∠H( jω): 

�
�
�� � � (4) 

(5)  �
�
�g
d
d

� �

The phase delay, τφ, defines the delay imparted by the filter to a spectral compo-
nent with frequency ω. A filter with linear phase will impart the same time delay 
to all frequencies, implying a phase shift proportional to frequency (i.e. φ = 2πfτφ). 
Phase distortion arises when the delay changes with frequency and is quantified 
using the group delay, τg. Between (4) and (5), it’s clear that a constant group 
delay implies a constant phase delay (i.e. τg = τφ = constant). The group and phase 
delays for the LP4F and LP8F are given in Figure 2D and Figure 3D, respectively. 

The effect of filter order on the phase response can be seen by comparing the 
LP4F (Figure 2C-D) to the LP8F (Figure 3C-D). The passband phase distortion, 
phase delay, and group delay are all greater for the 8-pole filter. Comparing the to-
tal frequency response of the LP4F to the LP8F (Figure 2 vs. Figure 3) highlights 
an important point: for some prototypes, increasing the filter order to obtain a 
flatter passband response and sharper roll-off comes at the expense of phase line-
arity. In other words, it is generally not possible to simultaneously maximize both. 
Even for designs that overcome this limitation4, there is still a tradeoff in cost: as 
noted earlier, higher order filters require more hardware to implement.

Figure 4 illustrates the relationship between phase delay and distortion using the 
LP8F as an example. A test signal is constructed from the first two (odd) harmon-
ics of a square wave with frequencies f1 and f3, where by definition f3 = 3f1 (Fig-
ure 4A). This test signal is then filtered using the LP8F with a cutoff frequency set 
so that f3 = .75Fc. From the LP8F frequency response (Figure 3), we see that both 
components are within the flat portion of the LP8F’s passband (i.e. no attenua-
tion), but the f3 component will lag the f1 component in the filter’s output. The 
unequal phase delays are evident in Figure 4B. This phase distortion translates to 
an output waveform that is both delayed in time and modified in shape (Figure 
4C). Note that since we are working with normalized frequencies, units of time 
are scaled by the cutoff frequency Fc. 

4 For example, Bessel filters are optimized for phase linearity; increasing the order of a Bessel fil-

ter improves the phase linearity with almost no effect on the amplitude response. It is also possible 

to phase equalize an elliptic filter – a design optimized for passband flatness and sharp roll-off – so 

that increasing the order simultaneously improves both the amplitude and phase response.  
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Figure 4. Example illustrating the effect of phase delays on a filtered signal. (A) The test signal is a square wave 

composed of the first two harmonics, f1 and f3, where f3 = 3f1. (B) After filtering with the LP8F (dashed lines), the 

two components are delayed by different amounts. (C) As a consequence, the composite signal output from the filter 

is a delayed and distorted version of the input signal.  Note that in all plots, only a steady-state section of the signal is 

shown; the initial transient response is omitted for clarity.  
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The previous example showed how the phase delay translates to measurable time 
shifts in the filter output. The group delay also has physical meaning, which is 
most easily understood by considering an amplitude modulated (AM) signal. In 
the appendix (Section A.3), we show how a filter’s phase response can separate 
the phase and group delays of AM inputs, and in doing so shed light on the dis-
tinction between the two.

2.3 Transient Response

Though the frequency response guides most decisions regarding filter design and 
selection, it is also useful to consider the time-domain response to a reference 
waveform. Conventionally, the reference waveform is a hypothetical, physically 
unrealistic transient: it is chosen as an extreme case to challenge the filter. The 
impulse response is defined by passing a unit impulse through the filter and 
examining the output waveform in time5. Similarly, the step response is defined 
by passing a unit step function through the filter (Figure 5A). Here we address the 
latter, as it is the only transient response we include with our filter specification 
sheets.

Step Response

The step response of the LP4F filter is summarized in Figure 5B. As with the am-
plitude response, a number of standard descriptors are used for characterization 
and comparison. There is an initial delay in the output waveform relative to the 
unit step. We quantify this delay using two measures: the 50% delay is the time it 
takes for the output waveform to reach half the amplitude of the unit step; the 10-
90% rise is the time it takes for the output waveform to increase from 10% of the 
unit step amplitude to 90%. The maximum difference (> 0) between the output 
waveform and the unit step is termed the overshoot and is expressed as a percent 
deviation. Subsequent oscillation about the ideal response is termed ringing.  

The step response can also be examined by determining the settling time (Figure 
5C). The settling time is computed in two parts. For the initial rise, it is simply the 
absolute deviation from the ideal step response. This deviation is then extended 
by plotting the amplitude of the ringing (relative to the ideal response) as it decays 
over time. We call this deviation the settling error and express it as a percentage. 
Notice that the settling time plot for LP4F is extended beyond the limits of the 
step response, where the settling error diminishes to <<1%. The settling time 
provides an indication of how ‘responsive’ the filter is to rapidly changing input 
signals, such as pulses, shocks, or other waveforms with sharply rising or falling 
edges. To extend the LP4F and LP8F comparison to the time domain, we also 

5 Recall that filtering in the time domain is represented as convolution between an input signal and 

the filter’s impulse response (Figure 1): the impulse response defines the convolution kernel.
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include the LP8F settling time in Figure 5C. The higher-order LP8F is less re-
sponsive than the LP4F: it takes approximately half as long for the LP4F to reach 
settling errors below 10% as the LP8F.
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Figure 5. Example of the step response. (A) Sketch depicting the reference input used to define a filter’s step 

response. (B) The step response of the LP4F, with standard measures used in PFI’s specification sheets labeled. (C) 

Settling time representation of the step response for both the LP4F and LP8F. Both (B) and (C) include tabulated data, 

as is standard on PFI specification sheets. 
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2.4 Alias Attenuation

Alias attenuation, or anti-aliasing, is the primary function of an analog low-pass 
filter in a signal conditioning system. Aliasing is a consequence of sampling: the 
term alias refers to an apparent frequency component in a sampled signal whose 
true (analog) frequency is higher. In other words, the spectral component appears 
as a lower-frequency alias in the sampled signal. According to the sampling the-
orem, the choice of sample rate Fs defines the baseband as the interval from DC 
( f = 0) to Fs/2. Once a signal is sampled at this rate, any spectral component f that 
lies outside the baseband (i.e., f > Fs/2) will produce an alias fa in the baseband 
according to 

(6) f f nFa s� �

where n is an integer ≥ 1. Note that multiple spectral components can produce the 
same baseband alias and, importantly, cannot be separated from the true baseband 
signal once it’s sampled.

A useful way to think about aliasing is in terms of spectral folding. In this view, 
sampling an analog signal is equivalent to folding the frequency axis at integer 
multiples of the folding frequency, Fs/2. This can be visualized by constructing 
a spectral folding chart (Figure 6A). The chart depicts a horizontal frequency 
axis that is repeatedly folded over itself: the vertex of each fold corresponds to a 
multiple of the folding frequency. When plotted this way, vertical lines connect 
all out-of-band frequencies (i.e. f > Fs/2) with their baseband aliases on the bottom 
of the chart (i.e. fa < Fs/2). Note that for the sake of illustration, the folding chart 
in Figure 6A is arbitrarily limited to f/Fs = 3.5, but can be extended to the highest 
frequency present in a signal. 

The relationships summarized in Figure 6A can be combined with a filter’s 
amplitude response to quantify the attenuation of aliased components for a given 
sample rate. In Figure 6B, the LP4F’s amplitude response is shown over the pass-
band and transition band. As an example, a sample rate Fs = 6Fc is selected, which 
equates to a folding frequency of 3Fc. By folding the amplitude response about 
Fs/2, any frequency component above Fs/2 can be connected to its baseband alias.  
To illustrate, the first alias corresponding to the cutoff frequency is labeled on the 
plot ( fa); it would appear in the sampled baseband down 65 dB from its original 
amplitude. 

In practice, alias attenuation is usually measured in terms of the highest frequen-
cy of interest. Again referring to Figure 6B, assume the LP4F is used to filter a 
signal in which the highest frequency of interest, fh, is at the cutoff frequency Fc. 
At this frequency, the minimum attenuation of in-band aliases will be 65 dB (i.e. 
fa), compared to a maximum attenuation of 3 dB (at fh) for the in-band signal. For 
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frequencies of interest less than fh, the alias attenuation will be greater. 

For a given Fs and fh, the minimum attenuation will depend on the shape of a 
filter’s amplitude response. This dependence is included on all our low-pass filter 
specification sheets; an example for the LP4F is shown in Figure 7. (The exam-
ple alias fa shown in Figure 6B is included to aid comparison.) In this plot, each 
line represents a different value of fh (scaled by Fc). For a fixed fh, the minimum 
attenuation increases as the sample rate increases relative to fh. This is equivalent 
to moving Fs to the right in Figure 6B. When combined with the amplitude and 
phase response (e.g. Figure 2), the plot can be used to determine an appropriate 
sample rate and cutoff frequency for the desired level of in-band attenuation, 
phase linearity, and alias attenuation at the highest frequency of interest.
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Figure 7. LP4F alias attenuation plot. The point corresponding to fa in Figure 6B is included for reference. Note that 

the lower bound of the frequency axis equates to Fs = 2fh, ensuring fh is within the baseband defined by Fs.

High-pass and Band-pass Filters

While most of the concepts introduced above apply to all filter classes, our focus 
to this point has been on low-pass filtering. This is not without reason: low-pass 
filters are a critical component of most signal conditioning systems. However, 
our filter documentation also includes specifications for high-pass and band-pass 
classes, so we conclude with an example of a high-pass filter response, along with 
a brief overview of band-pass filter design.

High-pass Filters

Figure 8 shows the normalized frequency response of PFI’s HP4F filter. The 
correspondence between the amplitude response of the LP4F (Figure 2A-B) and 
the HP4F (Figure 8A-B) is apparent: the high-pass response is an inverted version 
of the low-pass response. This is by design, as both transfer functions are based 
on the same filter prototype (in this case, PFI’s FLAT mode). Consequently, the 
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descriptors introduced in Figure 2 can be applied to the high-pass response. How-
ever, unlike the LP4F – whose passband is bounded at DC ( f = 0) – there is no 
natural upper bound to the HP4F’s passband. (Though there is a practical upper 
bound that depends on the filter’s circuitry.) 
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on PFI specification sheets. Note that the gain and attenuation in (A) and (B) are equivalent except for a sign change.  

For this reason, the HP4F’s phase response is presented differently (Figure 8C).  
The HP4F phase is plotted on a logarithmic frequency scale over a wider range 
than the LP4F. There is no measure of phase distortion because the linear refer-
ence response is not well-defined6. So while not apparent between Figure 2C and 
Figure 8C, the two phase responses share the same correspondence as that noted 
for the amplitude response, with one important difference: the high-pass phase is 
positive. From Equation (4), this implies a negative phase delay. So for any spec-

6 In the low-pass case, the linear response is defined by the zero-phase slope at DC. In the high-

pass case, the zero-phase slope is approached asymptotically as f >> Fc and φ → 0. In the high-fre-

quency limit, the zero-phase slope → 0, implying that if the high-pass phase distortion is defined 

in the same way as it is for a low-pass filter, the phase distortion and phase response are one and 

the same. 
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tral component passed through the HP4F, the output will lead the input.

The difference between a leading and lagging phase response can be illustrated 
by passing a pure sinusoidal tone through each filter (Figure 9). In Figure 9A, the 
phase response of the LP4F and HP4F are plotted together to show their inverse 
relationship. At the cutoff frequency Fc, the phases are equal but of opposite sign 
(± 180°). The response of each filter to a sinusoidal input with a frequency equal 
to Fc is shown in Figure 9B. The responses differ only in the early (transient) 
portion of the output signal; the steady-state responses are identical, since the dif-
ference in phase shift equates to a full period of the cycle (i.e. 360° = 2π radians). 
Observing the transient response, it’s worth noting that a negative phase delay, or 
lead, does not violate causality – output does not precede input – but is simply a 
consequence of the frequency-domain description in terms of periodic inputs. 
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The high-pass transient response can be characterized using the unit step as 
described in Section 2.3. Again, the descriptors used to characterize the low-pass 
step response (Figure 5) can be applied to the high-pass step response (Figure 10), 
with one key difference: the ideal low-pass response is full preservation of the 
unit step, whereas the ideal high-pass response is attenuation of the unit step
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to the stopband level (80 dB for HP4F). Consequently, the 10-90% rise becomes 
the 90-10% fall, and the undershoot is below the ideal response level.

 Band-pass Filters

Band-pass filters are designed to produce a passband bounded by two finite cutoff 
frequencies. A band-pass amplitude response can be realized by cascading a high-
pass filter in series with a low-pass filter. In this case, the total amplitude response 
is the product of the high- and low-pass amplitude responses, and the total phase 
response is the sum of the high- and low-pass phase responses. The band-pass 
response can then be characterized in terms of the high-pass and low-pass cutoff 
frequencies, FHP and FLP. Extending the examples introduced above, consider 
the combined amplitude response of the HP4F and LP4F (Figure 11A). If both 
filters are set to the same cutoff frequency, FHP = FLP, then their passbands do 
not overlap: the minimum attenuation is twice the conventional cutoff attenuation 
(i.e. 6.02 dB, or |H| = ½). We call this minimum attenuation the insertion loss. A 
3 dB bandwidth, B3dB, can be defined relative to the level of insertion loss. To 
extend the bandwidth, the passband overlap must be increased. We quantify the 
overlap in terms of the ratio α = FLP / FHP, with the design criterion FLP ≥ FHP. A 
center frequency Fo corresponding to the insertion loss can also be defined as the 
geometric mean of the low-pass and high-pass cutoff frequencies, 

(7) F F Fo HP LP=

In Figure 11B, the response shown in Figure 11A for α = 1 is compared with 
responses for α = 2 and α = 4, respectively, where the frequency axis is now 
scaled by the center frequency Fo. Notice that as α increases, the bandwidth B3dB 
increases and the insertion loss decreases, resulting in a broader passband. A con-
venient normalized measure of band-pass filter shape is the sharpness Q, which 
is just the ratio of the center frequency Fo to the 3 dB bandwidth B3dB. A high Q 
value indicates a sharper band-pass filter with a narrower passband. For design 
purposes, the relations given in Figure 11B can be used to set the cutoff frequen-
cies for a desired band-pass center frequency, bandwidth, and sharpness. 

The band-pass phase response for the same three values of α are shown in Figure 
11C. The phase changes sign at the center frequency – the reason for this should 
be apparent by inspection of Figure 9A – and, consequently, there is a change 
from leading to lagging phase across the passband. The symmetry of the HP4F-
LP4F band-pass response means that if two spectral components with a geometric 
mean equal to Fo are passed through the filter, they will be attenuated and shifted 
by the same amount, but one will lead and the other will lag. Definitions of phase 
distortion for the band-pass response suffer from the same ambiguity noted for the 
high-pass phase response. Characterization of phase linearity should therefore be 
done with reference to the in-band limits. 
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3. A Brief Word on Filter Selection
The preceding section introduced three responses – amplitude, phase, and tran-
sient step – that are used to analyze and compare filter characteristics. It’s impor-
tant to remember that the responses are not independent. Changing the order of a 
filter to achieve a desired amplitude response may cause unacceptable changes in 
the phase or transient response, and vice versa. As shown for PFI’s FLAT mode 
filter, there is a tradeoff in increasing the order: passband flatness and roll-off 
sharpness are gained in exchange for phase linearity and time-domain respon-
siveness. (Not to mention cost of hardware implementation, which increases with 
filter order.) Similar trade-offs will occur when choosing between different filter 
prototypes. PFI’s two proprietary filter designs are complementary in this regard. 
The FLAT mode filters introduced above are constructed to maximize perfor-
mance in the amplitude response, while the PULSE mode filters are optimized for 
phase linearity and transient response. For this reason, PFI offers programmable 
filters that can operate in either mode, allowing users to change the response on 
the fly without modifying hardware.    

Choosing the right filter for a particular application requires a clear assessment of 
measurement criteria. If the priority is amplitude preservation for spectral analy-
sis, then optimizing the amplitude response in exchange for some phase nonline-
arity may be acceptable. If waveform reproduction is important, then optimizing 
for phase linearity in exchange for a less discriminating amplitude response may 
be acceptable. As an example of the latter, a well-established rule7 in the meas-
urements community stipulates that for adequate waveform reproduction, in-band 
attenuation should deviate from a flat response by no more than 5%, and in-band 
phase distortion should be kept below 5°. With criteria like these in mind and an 
understanding of the material presented in a standard filter specification sheet, a 
judicious choice of filter for the application in question should be straightforward.

4. Summary
The content presented here was framed by the organization of our standard 
filter specification sheets. Our hope is that by structuring the paper this way, we 
facilitate careful scrutiny of our filter specifications and assist our users with 
product selection and configuration. The interested reader can find more detailed 
treatments in numerous textbooks and other curricular materials. Expanded dis-
cussions on some topics introduced here (e.g. anti-aliasing) are available in PFI’s 
technical library.  

7 Wright, C.P. 1995. Applied Measurement Engineering. Prentice Hall, Edgewood Cliffs, NJ.  

402pp. 
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A. Appendix

A.1 Symbols

N(s)   Numerator polynomial of the filter transfer function
D(s)  Denominator polynomial of the filter transfer function
H(s)  Filter transfer function
|H(s = jω)|  Amplitude response
∠ H(s = jω)  Phase response (φ)
HdB   Amplitude response in decibels
B3dB  3 dB bandwidth of band-pass amplitude response
Fc   Filter cutoff frequency
FHP  High-pass filter cutoff frequency for band-pass cascade
FLP   Low-pass filter cutoff frequency for band-pass cascade
Fo   Band-pass center frequency
Fs   Sampling frequency
L   Laplace transform operator
L-1   Inverse Laplace transform operator
h(t)   Impulse response
τφ	 	 	 Phase delay
τg   Group delay
f   Frequency in Hz
fa   Alias frequency
fh   Highest frequency of interest (in-band upper bound)
s   Laplace domain coordinate
α	 	 	 Band-pass overlap ratio (FLP/FHP)
φ	 	 	 Phase angle
ω	 	 	 Frequency in radians per second
Q   Band-pass sharpness (Fo/B3dB)
zi   Transfer function zero
pi   Transfer function pole

A.2 Glossary of Terms

Alias – An apparent in-band frequency component in a sampled signal whose true 
(analog) frequency is higher. Can cause undetectable corruption to the in-band 
signal of interest.

Amplitude response – Magnitude of the complex frequency response. Defines the 
ratio of output to input amplitude. Along with the phase response, forms the total 
filter frequency response. 

Anti-aliasing – Application of a low-pass filter to remove out-of-band spectral 



 Understanding Filter Specification Sheets 20

Phone: 607-277-3550
Web Site: www.pfinc.com

components so that their aliases do not corrupt sampled in-band signals.    

Attenuation – Input-to-output reduction in amplitude measured in dB; equates to 
(-1)*Gain.  

Band-pass – Class of filters defined by an amplitude response with a passband of 
finite width, in which the lower frequency bound of the passband is above DC ( f 
>0).   

Band-stop – Class of filters defined by an amplitude response with a stopband of 
finite width, in which the lower frequency bound of the stopband is above DC ( f 
>0).   

Baseband – Any spectral band with a lower bound at DC ( f = 0).

Cascading – Construction of a band-pass amplitude response by connecting high-
pass and low-pass filters in series.  

Cutoff frequency – The frequency defining the passband edge of a filter’s ampli-
tude response, conventionally defined as the 3.01 dB attenuation level (1⁄√2).

DC gain  – Maximum gain for a low-pass filter.  

Filter class – Filter classification defined by the relative spectral position of the 
passband(s), transition band(s), and stopband(s).   

Filter prototype – Filter classification based on the mathematical form of the 
transfer function; can be adapted for different filter classes and orders.  

Folding frequency – Frequency about which spectral folding occurs to produce 
aliases in sampled signals; equal to half the sampling frequency.  

Frequency response – Relationship defined by the transfer function that relates 
filter output (amplitude and phase) to input in terms of frequency. 

Gain – Input-to-output increase in amplitude measured in dB.  

Gain factor – Coefficient of the factored transfer function (pole-zero form) that 
defines the frequency response; determines overall system gain between input and 
output.   

Group delay – One of two time delays defined by the phase response. The group 
delay quantifies the change of phase with frequency; non-constant group delay 
provides a measure of input-to-output wave shape modification.

High-frequency gain – Maximum gain for a high-pass filter. 

High-pass – Class of filters that attenuate frequencies from DC ( f = 0) to Fc and 
pass frequencies above Fc.   

Impulse response – The time-domain filter output resulting from a unit-impulse 
input.   
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In-band – The spectral region of interest in any measurement (i.e. the expected 
frequency range of the desired signal). 

Insertion loss – For band-pass filters, the minimum attenuation in the amplitude 
response. 

Low-pass – Class of filters that pass frequencies from DC ( f = 0) to Fc and atten-
uate frequencies above Fc.   

Minimum attenuation (aliasing) – Measure of anti-aliasing efficacy: the mini-
mum attenuation of in-band aliases, defined as the attenuation of the first spectral 
component whose alias appears at the highest frequency of interest.  

Normalized response – The frequency response over a dimensionless frequency 
domain, in which the frequency is scaled by the cutoff frequency.  

Order (filter) – The order of the polynomial in the denominator of the transfer 
function, equal to the number of filter poles.    

Out-of-band – The spectral region lying outside the region of interest (i.e. outside 
the expected frequency range of the desired signal).   

Overshoot – Measure used to characterize the step response of a low-pass filter, 
quantified as the maximum response level above the ideal response.  

Passband – The spectral range in the amplitude response over which the attenua-
tion is less than a predefined threshold (conventionally 3.01 dB).  

Phase delay – One of two time delays defined by the phase response. The phase 
delay converts the phase shift to a time delay for a given spectral component.  

Phase distortion – Defined as the deviation of the phase response from a linear 
function of frequency. Provides a semi-quantitative measure of input-to-output 
wave shape modification.    

Phase response – Phase angle of the complex frequency response. Defines the 
phase shift of spectral components as a function of frequency. Along with the 
amplitude response, forms the total filter frequency response. 

Poles (filter) – Zeros of the factored polynomial in the denominator of the trans-
fer function. Equates to the filter order.  

Ringing – Describes oscillations in a filter’s step response about the expected 
(ideal) value.  

Ripple – Describes prescribed variation in the amplitude response of a filter pro-
totype over the passband and stopband.  

Roll-off – A measure of filter sharpness, defined as the average slope of the am-
plitude response over the transition band.  

Settling error – The deviation of the step response from the ideal response, typi-
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cally expressed as a percentage.  

Settling time – The time required for the settling error to fall below a given 
threshold.  

Shape factor – An alternative measure of filter sharpness, given as a ratio of the 
frequencies bounding the transition band.  

Spectral folding – Term used to describe aliasing in sampled signals, which can 
be represented as repeated folding of the frequency axis at integer multiples of the 
folding frequency.  

Step response – The time-domain filter output resulting from a unit-step input.   

Stopband – The spectral range in the amplitude response over which the atten-
uation is greater than a predefined threshold (80 dB in the examples presented 
above).  

Transfer function – A rational function in the complex Laplace variable s that 
defines the input-output relationship for the filter.  

Transient response – The time-domain response of a filter to a reference wave-
form (see impulse and step response).  

Transition Band – The spectral range in the amplitude response over which the 
attenuation lies between the passband and stopband levels.  

Undershoot – Measure used to characterize the step response of a high-pass filter, 
quantified as the maximum response level below the ideal response.  

Zeros (filter) – The zeros of the factored polynomial in the numerator of the 
transfer function.  

A.3 Group Delay vs. Phase Delay:  Amplitude Modulated Waveform

The phase response is commonly characterized in terms of two time delays, the 
phase and group delay. For some input signals, the two delays are distinct and 
measurable in the filter output. As an illustrative example, consider an amplitude 
modulated (AM) input signal with the following form:

(A.1) x t a t tc( ) ( )sin( )� �

The carrier wave has angular frequency ωc, while the modulation waveform,

(A.2) a t A tm( ) cos( )� �1 �

has angular frequency ωm, where by design ωm << ωc. Combining (A.1) and 
(A.2), we have
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(A.3)  x t A t t tm c c( ) cos( )sin( ) sin( )� �� � �

Making use of a sum-to-product identity8 for trigonometric functions, we can 
write (A.3) as

(A.4) x t t A t A tc c m c m( ) sin( ) sin ( ) sin ( )� � �� � � �� �� � � � �
2 2

Between (A.1) and (A.4), we see that the AM signal consists of three spectral 
components: the carrier signal at ωc, and two adjacent sidebands at ωc ± ωm. This 
is the origin of the term double sideband modulation. 

Now imagine passing (A.4) through an analog filter. We’ll assume the three com-
ponents lie entirely within the filter’s passband, so that |H( jωc)| = |H( jωc ± jωm)| 
≈ 1. Passage through the filter then imparts only a phase shift to the components, 
resulting in an output signal y(t) with the form:

(A.5) y t t A t A tc c c m c c m c( ) sin( ) sin ( ) sin ( )� � � � �� � � � �� �� �� � � � � � � �
2 2

The phase shifts can be determined by the phase response of the filter, i.e.

(A.6) � � �( ) ( )� �H j

Noting again the condition ωm << ωc, the phase shifts of the sidebands can be 
approximated in terms of φc = φ(ωc) via a first-order Taylor series expansion:

(A.7) � �
�
�
�c c
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Substituting (A.7) and (A.8) into (A.5) and rearranging, we have:
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We can now recast (A.9) in the form of (A.3) by writing the last two terms as a 
product8:

(A.10) y t t A t d
d

tc c m
c

m c c( ) sin( ) cos sin( )� � � ��
�
�

�
�
� �� � �

�
�
� � �

8 2sin( )cos( ) sin( ) sin( )� � � � � �� � � �
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or in AM signal form,

(A.11) y t A t d
d

tm
c

m c c( ) cos sin( )� � ��
�
�

�
�
�

�

�
�

�

�
� �1 �

�
�
� � �

Notice that the phase shifts of the modulation envelope and the carrier are not 
equal. To see this clearly, we can express the shifts in terms of the phase and 
group delays, τφ	and τg, defined in Equations (4) and (5):

(A.12) y t A t tm g c( ) cos ( ) sin ( )� � �� �� � �� �1 � � � ��

The modulation waveform, or envelope, of the signal is delayed by the group 
delay, τg, while the carrier wave is delayed by the phase delay, τφ. Note that both 
delays are determined by the phase response at the carrier frequency, ωc.

To demonstrate this effect, consider the following example. A test signal defined 
by Equation (A.3) is passed through the LP8F. The carrier frequency is set to 
.75Fc; at this frequency, the LP8F has a flat amplitude response (|H( jω)| ≈ 1), 
significant phase distortion (≈ 30°), and measurable separation between the group 
and phase delays (Figure 3). The modulation frequency is set to .05Fc.  

The test signal at the input of the filter is shown in Figure 12A. In Figure 12B, 
we overlay the unfiltered and filtered signals over a single cycle of the modulated 
waveform. Since τg ≠	τφ,	the output signal is not an exact shifted replica of the 
input signal, but the phase and group delays are easily recognized from the carrier 
and envelope, respectively. Upon close inspection, the delays are consistent with 
those predicted by the phase response at ωc (τg = 1.2/Fc, τφ = .83/Fc: see Figure 
3D). If we evaluate (A.12) using these delays, the result matches the filtered wave-
form. 

The example presented here explains the origin of the term ‘group delay’. The AM 
signal in Figure 12A is equivalent to a train of tone bursts at the carrier frequency, 
ωc. If the duration of each burst is long such that the condition ωc >> ωm holds, 
then each burst – or group – is delayed by τg. 
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Figure 12.  Example of filtering an amplitude modulated waveform. (A) Input AM waveform, as defined by Equa-

tion (A.3). The carrier and modulation frequencies are given in terms of the LP8F cutoff frequency Fc. (B) Comparison 

of AM input and output. The phase and group delays correspond to the carrier and modulation (envelope) delays, 

respectively. Also shown is y(t) from Equation (A.12), where τφ	and τg are taken from the LP8F phase response at 

ωc.        
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